Autumn Scheme of Learning

Year 3/4

\#MathsEveryoneCan

2019-20
Rose

Notes and Guidance

How to use the mixed-age SOL

In this document, you will find suggestions of how you may structure a progression in learning for a mixed-age class.

Firstly, we have created a yearly overview.

Each term has 12 weeks of learning. We are aware that some terms are longer and shorter than others, so teachers may adapt the overview to fit their term dates.

The overview shows how the content has been matched up over the year to support teachers in teaching similar concepts to both year groups. Where this is not possible, it is clearly indicated on the overview with 2 separate blocks.

For each block of learning, we have grouped the small steps into themes that have similar content. Within these themes, we list the corresponding small steps from one or both year groups. Teachers can then use the single-age schemes to access the guidance on each small step listed within each theme.
The themes are organised into common content (above the line) and year specific content (below the line). Moving from left to right, the arrows on the line suggest the order to teach the themes.

Notes and Guidance

How to use the mixed-age SOL

Here is an example of one of the themes from the Year 1/2 mixed-age guidance.

Subtraction

Year 1 (Aut B2, Spr B1)

- How many left? (1)
- How many left? (2)
- Counting back
- Subtraction - not crossing 10
- Subtraction - crossing 10 (1)
- Subtraction - crossing 10 (2)

In order to create a more coherent journey for mixed-age classes, we have re-ordered some of the single-age steps and combined some blocks of learning e.g. Money is covered within Addition and Subtraction.

The bullet points are the names of the small steps from the single-age SOL. We have referenced where the steps are from at the top of each theme e.g. Aut B2 means Autumn term, Block 2. Teachers will need to access both of the single-age SOLs from our website together with this mixed-age guidance in order to plan their learning.

Year 2 (Aut B2, B3)

- Subtract 1-digit from 2-digits
- Subtract with 2-digits (1)
- Subtract with 2-digits (2)
- Find change - money

Points to consider

- Use the mixed-age schemes to see where similar skills from both year groups can be taught together. Learning can then be differentiated through the questions on the single-age small steps so both year groups are focusing on their year group content.
- When there is year group specific content, consider teaching in split inputs to classes. This will depend on support in class and may need to be done through focus groups .
- On each of the block overview pages, we have described the key learning in each block and have given suggestions as to how the themes could be approached for each year group.
- We are fully aware that every class is different and the logistics of mixed-age classes can be tricky. We hope that our mixed-age SOL can help teachers to start to draw learning together.

Guidance

Common Content

In this section, content from single-age blocks are matched together to show teachers where there are clear links across the year groups.
Teachers may decide to teach the lower year's content to the whole class before moving the higher year on to their age-related expectations.
The lower year group is not expected to cover the higher year group's content as they should focus on their own age-related expectations.

In this section, content that is discrete to one year group is outlined.

Teachers may need to consider a split input with lessons or working with children in

Year 3 content
focus groups to ensure they have full coverage of their year's curriculum.
Guidance is given on each page to support the planning of each block.
Year 4 content

The themes should be taught in order from left to right.

Year Specific

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& Week 1 \& Week 2 \& Week 3 \& Week 4 \& Week 5 \& Week 6 \& Week 7 \& Week 8 \& Week 9 \& Week 10 \& Week 11 \& Week 12

\hline ¢ \& \multicolumn{4}{|c|}{Number: Place Value} \& \multicolumn{4}{|c|}{Number: Addition and Subtraction} \& \multicolumn{4}{|l|}{Number: Multiplication and Division}

\hline $$
\begin{aligned}
& \text { no } \\
& \stackrel{\text { Cu}}{0} \\
& \dot{0}
\end{aligned}
$$ \& \multicolumn{2}{|l|}{Number: Multiplication and Division} \& \multicolumn{2}{|l|}{Measurement: Length, Perimeter and Area} \& \multicolumn{4}{|c|}{Number: Fractions} \& Y3: Me

a

Y4: N \& mber: De \& | : Mass |
| :--- |
| y |
| cimals | \&

\hline \& \multicolumn{3}{|l|}{Number: Decimals (including Money)} \& \multicolumn{2}{|l|}{Measurement: Time} \& \multicolumn{2}{|l|}{Statistics} \& \multicolumn{4}{|l|}{Geometry: Properties of Shape (including Y4 Position and Direction)} \&

\hline
\end{tabular}

Year 3/4| Autumn Term | Week 9-12 - Multiplication and Division

Multiplication and Division

Common Content

	Times-tables
Year 3 (Aut B3)	Year 4 (Aut B4, Spr B1)
- Multiply by 3	- Multiply and divide by 6
- Divide by 3	- 6 times table and division facts
- 3 times-table	- Multiply and divide by 9
- Multiply by 4	- 9 times table and division facts
- Divide by 4	- Multiply and divide by 7
- 4 times-table	- 7 times table and division facts
- Multiply by 8	- 11 and 12 times table
- Divide by 8	
- 8 times-table	

Comparing and applying

Year 3 (Spr B1)

- Comparing statements
- Related calculations

Year 4 (Spr B1)

- Multiply 3 numbers
- Efficient multiplication

Equal groups

Year 3 (Aut B3)

- Multiplicationequal groups

Multiplying and dividing by 10,100, 1 and 0
Year 4 (Aut B4)

- Multiply by 10
- Multiply by 100
- Divide by 10
- Divide by 100
- Multiply by 1 and 0
- Divide by 1

In this block, children have a focus on times tables. Once introduced, children should practice every day to improve their fluency.

Year 4 also look at how place value is affected when multiplying and dividing by multiples of 10

Both year groups apply their knowledge of times tables by looking at related calculations and efficient multiplication.

White
 Multiplication \& Division
 R@se
 Maths Theme 1-Equal Groups

Year 3|Autumn Term | Week 9 to 11 - Number: Multiplication \& Division

Multiplication - Equal Groups

Notes and Guidance

Varied Fluency

Children recap their understanding of recognising, making and adding equal groups. This will allow them to build on prior learning and prepare them for the next small steps.

Mathematical Talk

What is the same and what is different between each of the groups?

What does the 3 represent?
What does the 8 represent?
How can we represent the groups?

Year 3|Autumn Term | Week 9 to 11 - Number: Multiplication \& Division

Multiplication - Equal Groups

Reasoning and Problem Solving

White
 Multiplication \& Division
 Theme 2 - Times tables

Multiply by 3

Notes and Guidance

Children draw on their knowledge of counting in threes in order to start to multiply by 3

They use their knowledge of equal groups to use concrete and pictorial methods to solve questions and problems involving multiplying by 3

Mathematical Talk

How many equal groups do we have?
How many are in each group?
How many do we have altogether?
Can you write a number sentence to show this?
Can you represent the problem in a picture?
Can you use concrete apparatus to solve the problem?
How many lots of 3 do we have?
How many groups of 3 do we have?

Varied Fluency

There are five towers with 3 cubes in each tower. How many cubes are there altogether?
\qquad $+\ldots+$ \qquad $+$ $+\ldots=$ \qquad
\qquad \times \qquad $=$

There are 7 tricycles in a playground. How many wheels are there altogether? Complete the bar model to find the answer.

There are 3 tables with 6 children on each table. How many children are there altogether?
\qquad lots of \qquad
\qquad
\qquad \times \qquad $=$ \qquad

Multiply by 3

Reasoning and Problem Solving

There are 8 children. Each child has 3 sweets. How many sweets altogether?	There are 24 sweets altogether.
Use concrete or pictorial representations to show this problem.	Children may use items such as counters or cubes.
Write another repeated addition and multiplication problem and ask a friend to represent it.	They could draw a bar model for a pictorial representation.

If $5 \times 3=15$, which number sentences would find the answer to 6×3 ?	$5 \times 3+3$ because one more
- $5 \times 3+6$	lot of 3 will find the answer.
- $5 \times 3+3$	
- $15+3$	$15+3$ because adding one more
- $15+6$	lot of 3 to the
- 3×6	answer to 5 lots will give me 6 lots.
Explain how you know.	
	3×6 because 3
	$\times 6=6 \times 3$
	(because
	multiplication is
	commutative).

Divide by 3

Notes and Guidance

Varied Fluency

Children explore dividing by 3 through sharing into three equal groups and grouping in threes.

They use concrete and pictorial representations and use their knowledge of the inverse to check their answers.

Mathematical Talk

Circle the counters in 3 equal groups and complete the division.

\qquad $\div 3=$ \qquad

Can you put the counters into groups of three?
Can you share the number into three groups?
What is the difference between sharing and grouping?

Bobbles come in packs of 3
If there are 21 bobbles altogether, how many packs are there?

Divide by 3

Reasoning and Problem Solving

Explain your choice.

The 3 Times Table

Notes and Guidance

Children draw together their knowledge of multiplying and dividing by three in order to become more fluent in the three times table.

Children apply their knowledge to different contexts.

Mathematical Talk

Can you use concrete or pictorial representations to help you?

Varied Fluency

\square Complete the number sentences.
1 triangle has 3 sides.
3 triangles have___ sides in total.
$\overline{5}$ triangles have___ sides in total.

$$
1 \times 3=3
$$

$3 \times$ \qquad $=$ $=6$
\qquad

Tick the number sentences that the image shows.

$12 \div 3=4$
$12=4 \times 3$
$3 \div 4=12$
$3=12 \div 4$
$3 \times 12=4$
$3 \times 4=12$

What other facts can you link to this one?
What other times table will help us with this question?

$$
\begin{array}{ll}
1 \times 3=- & \times 3=30 \\
2 \times \ldots=6 & 8 \times \ldots=24 \\
-3 \times 3 & 6 \times 3=- \\
9 \times 3=- & 21=\ldots \times 3
\end{array}
$$

The 3 Times Table

Reasoning and Problem Solving

Multiply by 4

Notes and Guidance

Building on their knowledge of the two times table, children multiply by 4
They link multiplying by 4 to doubling then doubling again. Children connect multiplying by 4 to repeated addition and counting in 4 s .
To show the multiplication of 4, children may use number pieces, cubes, counters, bar models etc.

Mathematical Talk

How many equal groups do we have?
How many are in each group?
How many do we have altogether?
Can you write a number sentence to show this?
Can you represent the problem in a picture?
Can you use concrete apparatus to solve the problem?
How many lots of 4 do we have?
How many groups of 4 do we have?

Varied Fluency

Match the multiplication to the representation.

$$
4 \times 4
$$

$$
4 \times 6
$$

$$
8 \times 4
$$

How many dots are there altogether?

There are \qquad dice with \qquad dots on each.
There \qquad fours.
\qquad \times \qquad $=$ \qquad dots.

There are 4 pens in a pack. How many pens are there in 7 packs?

Multiply by 4

Reasoning and Problem Solving

Tommy has four bags with five sweets in each bag.	Annie has more sweets.	Here is a blue strip of paper.	The blue strip is 4 cm long.
Annie has six bags with four sweets in each bag.	She has four more sweets than	An orange strip is four times as long.	The orange strip is 16 cm long.
Who has more sweets?	Tommy.		The orange strip is 4 times as long as
How many more sweets do they have?		The strips are joined end to end.	the blue strip, so there are 5 equal
Draw a picture to show this problem.		$20 \mathrm{~cm}$ How long is the blue strip?	parts in total, and the length of each part is:
		How long is the orange strip?	$\begin{aligned} & 20 \div 5=4 \mathrm{~cm} \\ & \text { long. } \end{aligned}$
		Explain how you know.	To find the length of the orange part:

Divide by 4

Notes and Guidance

Varied Fluency

Children explore dividing by 4 through sharing into four equal groups and grouping in fours.

They use concrete and pictorial representations and their knowledge of the inverse to check their answers.

Mathematical Talk

Can you put the buttons into groups of fours?
Can you share the number into four groups?
What is the difference between sharing and grouping?

ㅇ:3:

Can you also split the buttons into 4 equal groups? How is this the same? How is it different?
\square There are some cars in a car park.
Each car has 4 wheels.
In the car park there are 32 wheels altogether. How many cars are there?
\qquad \div \qquad $=$ \qquad
\square Complete the bar models and the calculations.

$$
24 \div 4=
$$

\qquad

Divide by 4

Reasoning and Problem Solving

Which of the word problems can be
solved using $12 \div 4$?
There are 12 bags of sweets with 4
sweets in each bag.
How many sweets are there altogether?

A rollercoaster carriage holds 4 people. How many carriages are needed for 12 people?

I have 12 crayons and share them equally between 4 people.
How many crayons does each person receive?

I have 12 buns and I give 4 to my brother.
How many do I have left?
Explain your reasoning for each.

No, the calculation
is $12 \times 4=48$
sweets

Yes, 12 is being grouped into 4s.

Yes, 12 is being shared equally into
4 groups.

No, the calculation is $12-4=8$ buns

Five children are playing a game.
They score 4 points for every bucket they knock down.

Mo	16
Eva	28
Tommy	12
Amir	32
Dora	8

How many buckets did they knock down each?
How many buckets did they knock down altogether?
How many more buckets did Eva knock down than Mo?

Mo $=4$ buckets.
Eva $=7$ buckets.
Tommy $=3$
buckets.
Amir $=8$ buckets.
Dora $=2$ buckets.

They knocked down 24 buckets altogether.

Eva knocked 3 more buckets down than Mo.

The 4 Times Table

Notes and Guidance

Children use knowledge of known multiplication tables (2, 3, 5 and 10 times tables) and understanding of key concepts of multiplication to develop knowledge of the 4 times table.

Children who have learnt $3 \times 4=12$ can use understanding of commutativity to know that $4 \times 3=12$

Mathematical Talk

What do you notice about the pattern?
Can you use concrete or pictorial representations to help you?
What other facts can you link to this one?
What other times tables will help you with this times table?

Varied Fluency

Use the pictorial representations to complete the calculations.
$1 \times 4=$ \qquad
$2 \times 4=$ \qquad
$3 \times 4=$ \qquad
Continue the pattern.
\square
2 cars have eight wheels. How many wheels do four cars have?
$2 \times 4=8$
$4 \times 4=$ \qquad
Three cows have 12 legs. How many legs do six cows have?
$3 \times$ \qquad $=12$
$6 \times$ \qquad $=$ \qquad
Colour in the multiples of 4 What pattern do you notice?

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

The 4 Times Table

Reasoning and Problem Solving

I have forgotten what 4×4 is.	$\begin{aligned} & 4 \times 4 \\ & =3 \times 4+4 \\ & =12+4 \end{aligned}$
Jack says, "The answer is more than 3×4 "	= 16
Complete the calculation to prove this. $4 \times 4=3 \times 4+\ldots$	$\begin{aligned} & 4 \times 4 \\ & =5 \times 4-4 \end{aligned}$
Mo says, "The answer is 4 less than 5×4 "	$\begin{aligned} & =20-4 \\ & =16 \end{aligned}$
Complete the calculation to prove this. $4 \times 4=-\times 4-$	
Teddy says, "The answer is double 2×4 "	$\begin{aligned} & 4 \times 4 \\ & =2 \times 4 \times 2 \\ & =16 \end{aligned}$
Complete the calculation to prove this. $4 \times 4={ }_{-} \times 4 \times \ldots$	
Whose idea do you prefer? Why?	

Explain why.

The place value counters do not
show counting in fours because each part has 3 in so it is counting in threes.

Multiply by 8

Notes and Guidance

Building on their knowledge of the 4 times table, children start to multiply by 8 , understanding that each multiple of 8 is double its equivalent multiple of 4 They link multiplying by eight to previous knowledge of equal groups and repeated addition. Children explore the concept of multiplying by 8 in different ways, when 8 is the multiplier (first number in the multiplication calculation) and where 8 is the multiplicand (second number).

Mathematical Talk

How many equal groups do we have? How many are in each group? How many do we have altogether? Can you write a number sentence to show this? Can you represent the problem in a picture?
Can you use concrete apparatus to solve the problem?
How many lots of 8 do we have?
How many groups of 8 do we have?
We have 8 groups, how many are in each group?

Varied Fluency

How many legs altogether do four spiders have?
There are \qquad legs on each spider.
\qquad $+$ $+$ \qquad $+$ \qquad = \qquad
\qquad $\times 8=$ \qquad
If there are \qquad spiders, there will be \qquad legs altogether.

Arrange 24 counters in an array as shown and complete the calculations.
\qquad $+$ \qquad $=$ \qquad \times \qquad
\qquad $+\ldots+$ \qquad $+\ldots+$ \qquad $+$ \qquad $+$ \qquad $+$ \qquad
\qquad \times \qquad
Fill in the table to show that multiplying by 8 is the same as double, double and double again.

6	6	6	6	6	6	6	6
$6 \times 2=$		$6 \times 2=$		$6 \times 2=$		$6 \times 2=$	
$\ldots 2=$				$\ldots 2=$			
$\ldots 2=$							

Multiply by 8

Reasoning and Problem Solving

$\begin{aligned} & 8 \times 3= \\ & 2 \times 4 \times 3= \\ & 2 \times 2 \times 2 \times 3= \end{aligned}$ \qquad What do you notice? Why do you think this has happened?	All of the answers are equal. 8 has been split (factorised) into 2 and 4 in the second question and 2,2 and 2 in the third.
Jack calculates 8×6 by doing 5×6 and 3×6 and adding them. \qquad $+$ \qquad $=$ \qquad Ron calculates 8×6 by doing $4 \times 6 \times 2$ \qquad $\times 2=$ \qquad Whose method do you prefer? Explain why.	Possible answers: I prefer Jack's method because I know my 5 and 3 times tables. I prefer Ron's method because I know my 4 times table and can double numbers.

What do you notice about each final answer?

Tommy knows the 4 times table table, but is still learning the 8 times table table.

Which colour row should he use? Why?

Each time the final number is 8 times greater than the starting number.

Tommy should use the yellow row because he can double each multiple of 4 to calculate a number multiplied by 8 e.g. $4 \times 6=$ 24 so 8×6 is double that (48).

Divide by 8

Notes and Guidance

Children explore dividing by 8 through sharing into eight equal groups and grouping in eights.

They use concrete and pictorial representations and their knowledge of inverse operations to check their answers.

Mathematical Talk

What concrete/pictorial representations might help you?
Can you group the numbers in eights?
Can you share the number into eights groups?
Can you use any prior knowledge to check your answer?

Varied Fluency

There are 32 children in a PE lesson.
They are split into 8 equal teams for a relay race.
How many children are in each team?
Use counters or multi-link to represent each child.
There are \qquad teams with \qquad children in each team.
\square
Crayons are sold in packs of 8.
Year 3 need 48 crayons.
How many packs should be ordered?
They should order \qquad packs of crayons.

\square Complete:

$$
\begin{array}{ll}
80 \div 8=_ & 8=72 \div \\
64 \div 8=_ & 8 \times \ldots=40 \\
\times 8=24 & -8=7
\end{array}
$$

Divide by 8

Reasoning and Problem Solving

Year 3|Autumn Term | Week 9 to 11 - Number: Multiplication \& Division

The 8 Times Table

Notes and Guidance

Children use prior knowledge of multiplication facts for 2, 3, 4 and 5 times tables along with the distributive law in order to calculate unknown multiplication facts.

Varied Fluency

Complete the diagram using known facts.

Mathematical Talk

Why is it helpful to partition the number you are multiplying by?

Can you use concrete or pictorial representations to help you?
What other facts can you link to this one?
What other times tables will help you with this times table?

Can you spot a pattern in the numbers?

The 8 Times Table

Reasoning and Problem Solving

Explain why	When you add an even number to an even number you always make an even number. The 8 times table is repeated addition so keeps adding an even number each time.
On a blank hundred square, colour multiples of 8 red and multiples of 4 blue. Always, Sometimes, Never - Multiples of 4 are also multiples of 8 - Multiples of 8 are also multiples of 4	1) Sometimes, every other multiple of 4 is also a multiple of 8 The ones in between aren't because the jumps are smaller than 8 2) Always - 8 is a multiple of 4 therefore all multiples of 8 will be multiples of 4

Rosie has some packs of cola which are in a box.

Some packs have 4 cans in them, and some packs have 8 cans in them.

Rosie's box contains 64 cans of pop.
How many packs of 4 cans and how many packs of 8 cans could there be?

Find all the possibilities.

Possible answers:

- 2 packs of 4,7
packs of 8
- 4 packs of 4,6
packs of 8
- 6 packs of 4,5
packs of 8
- 8 packs of 4,4 packs of 8
- 10 packs of 4,3 packs of 8
- 12 packs of 4,2 packs of 8
- 14 packs of 4,1
pack of 8

Year 4 | Autumn Term | Week 9 to 11 - Number: Multiplication \& Division

Multiply and Divide by 6

Notes and Guidance

Children draw on their knowledge of times tables facts in order to multiply and divide by 6

They use their knowledge of equal groups in using concrete and pictorial methods to solve multiplication and division problems.

Mathematical Talk

How many equal groups do we have? How many are in each group? How many do we have altogether?

Can you write a number sentence to show this?
Can you represent the problem in a picture?
What does each number in the calculation represent?

Varied Fluency

Complete the sentences.

There are \qquad lots of \qquad eggs.

There are \qquad eggs in total.
\qquad \times \qquad = \qquad
First there were \qquad eggs. Then they were shared into \qquad boxes.
Now there are \qquad eggs in each box.
\qquad \div \qquad

$$
=
$$

\qquad
Complete the fact family.
88 88 888 \qquad \times \qquad
 \qquad
(18) \div \qquad
\qquad
\qquad
\qquad
\qquad

There are 9 baskets.

Each basket has 6 apples in.
How many apples are there in total?
Write a multiplication sentence to describe this word problem.

Multiply and Divide by 6

Reasoning and Problem Solving

Always, Sometimes, Never	Always, because 6 itself is even and When you multiply any whole number by 6 it will always be an even number. Explain your answer. even \times even will always give an even product.

Teddy says,	Teddy is not correct because 12 $\div 6$ If then $12 \div 6=72$
Is Teddy correct?	
Explain your answer.	

Year 4 | Autumn Term | Week 9 to 11 - Number: Multiplication \& Division

6 Times Table \& Division Facts

Notes and Guidance

Children use known table facts to become fluent in the six times table.
For example, applying knowledge of the 3 times table by understanding that each multiple of 6 is double the equivalent multiple of 3
Children should also be able to apply this knowledge to multiplying and dividing by 10 and 100 (for example, knowing that $30 \times 6=180$ because they know that $3 \times 6=18$).

Varied Fluency

\square Complete the number sentences.

$$
\begin{array}{ll}
1 \times 3=- & 1 \times \ldots=6 \\
2 \times-=6 & 2 \times 6=- \\
3 \times 3=- & 3 \times 6=
\end{array}
$$

What do you notice about the 5 times table and the 6 times table?

Mathematical Talk

5 times table: 5	10	15	20	25	30
6 times table: 6	12	18	24	30	36

What do you notice about the 3 times table and the 6 times table?

Can you use $3 \times$ \qquad to work out $6 \times$ \qquad ?

Can you use 7×5 to work out 7×6 ?
Which known fact did you use?
$6 \times 2=$ \qquad
\qquad $\times 6=12$
$6 \times 2 \times 10=$ \qquad
\qquad $\times 20=120$
$20 \times$ \qquad $=120$
$6 \times 2 \times$ \qquad $=1,200$
$6 \times$ \qquad $=1,200$

$$
200 \times 6=
$$

\qquad $10 \times$ \qquad $\times 6=120$

6 Times Table and Division Facts

Reasoning and Problem Solving

I am thinking of 2 numbers where the sum of the numbers is 15 and the product is 54	6 and 9 because		
What are my numbers?	$9 \times 6=54$ $6 \times 9=54$ Think of your own problem for a friend to solve?		
$6+9=15$ $9+6=15$			
Always, Sometimes, Never	Sometimes. Every even multiple of 3 is a multiple of 6, but the odd multiples of 3 are not multiples of 6		
Explain why you think this. 6		\quad	
:---			

Choose the correct number or symbol

from the cloud to fill in the boxes. | $600 \div 100=6$ |
| :--- |
| $60=600 \div 10$ |

Year 4 | Autumn Term | Week 9 to 11 - Number: Multiplication \& Division

Multiply and Divide by 9

Notes and Guidance

Children use their previous knowledge of multiplying and dividing to become fluent in the 9 times table.

They apply their knowledge in different contexts.

Mathematical Talk

Can you use concrete or pictorial representations to helpyou answer the questions?
What other facts can you link to this fact?
What other times tables will help you with this times table?
What does each number in the calculation represent?
How many lots of 9 do we have?
How many groups of 9 do we have?

Varied Fluency

Complete the sentences to describe the oranges:
There are \qquad lots of 9

There are \qquad nines.
$4 \times$ \qquad $=$ \qquad

Complete the fact family.

\square Complete the sentences.
There are \qquad lots of \qquad
\qquad \times \qquad $=$
\qquad \div \qquad

There are \qquad lots of \qquad
\qquad \times \qquad
\qquad
\qquad \div \qquad
\qquad

[^0]
Year 4 | Autumn Term | Week 9 to 11 - Number: Multiplication \& Division

Multiply and Divide by 9

Reasoning and Problem Solving

True or False?	$\begin{aligned} & 6 \times 9=9 \times 3 \times \\ & 2 \end{aligned}$
$6 \times 9=9 \times 3 \times 2$	is true because $6 \times 9=54$
$9 \times 6=3 \times 9+9$	and $9 \times 3=27$
Explain your answer.	$27 \times 2=54$
	$9 \times 6=3 \times 9+$ 9 is false because $6 \times 9=54$ and $\begin{aligned} & 3 \times 9=27 \\ & 27+9=36 \end{aligned}$

They both have 54 sweets, arranged
in two different
arrays.

9 Times Table \& Division Facts

Notes and Guidance

Children use known times table facts to become fluent in the 9 times table.
For example, knowing that each multiple of 9 is one less than the equivalent multiple of 10 , and using that knowledge to derive related facts.
Children should also be able to apply the knowledge of the 9 times table when multiplying and dividing by 10 and 100

Mathematical Talk

How did you work out the missing numbers?
What do you notice about the multiples of 9 ?
What do you notice about the 9 times table and the 10 times table?

Varied Fluency

What are the missing numbers from the 9 times table?

9	18	27	-	45
54	-	72	81	90

Circle the multiples of 9 .

54	108	18	24	9	67	72	37

\square Use your knowledge of the 9 times table to complete the missing values.

$$
\begin{array}{ccc}
1 \times 9= & -\quad \times 1=9 & 1 \times 9 \times \ldots=90 \\
-\times 9=90 & 900=100 \times & 9 \times 1 \times 10= \\
9 \times \ldots=900 & 4 \times 9=\ldots & 9 \times 1 \times \ldots=900
\end{array}
$$

What do you notice about the 9 times table and the 10 times table?

$$
\begin{array}{cccccc}
9 \text { times table: } 9 & 18 & 27 & 36 & 45 & 54 \\
10 \text { times table: } 10 & 20 & 30 & 40 & 50 & 60
\end{array}
$$

9 Times Table and Division Facts

Reasoning and Problem Solving

I am thinking of two numbers.
The sum of the numbers in 17 .
The product of the numbers is 72 .
What are my secret numbers?
Can you choose your own two secret numbers from the 9 times table and create clues for your partner?

Always, Sometimes, Never

All multiples of 9 have digits that have a sum of 9 .

```
```

8 and 9 because

```
```

8 and 9 because
8\times9=72 or
8\times9=72 or
9\times8=72
9\times8=72
and
and
8+9=17 or
8+9=17 or
9+8=17

```
```

9+8=17

```
```

Always.

Multiply and Divide by 7

Notes and Guidance

Children use their knowledge of multiplication and division to multiply by 7
They count in 7 s , and use their knowledge of equal groups supported by use of concrete and pictorial methods to solve multiplication calculations and problems.
They explore commutativity and also understand that multiplication and division are inverse operations.

Mathematical Talk

How many do we have altogether?
What do you notice?
Can you work out the answers by partitioning 7 into 4 and 3 ?
Which multiples of 7 do you already know from your other tables?

Varied Fluency

Use a number stick to support counting in sevens. What do you notice?

Write down the first five multiples of 7
\square Rosie uses number pieces to represent seven times four. She does it in two ways.

4 sevens
4 lots of 7
4×7

Use Rosie's method to represent seven times six in two ways.
\square Seven children share 56 stickers. How many stickers will they get each?
Use a bar model to solve the problem.
One apple costs 7 pence. How much would 5 apples cost? Use a bar model to solve the problem.

Multiply and Divide by 7

Reasoning and Problem Solving

Mrs White's class are selling tickets at $£ 2$ each for the school play.	Number of tickets (chairs): The class can sell one ticket for each chair in the hall.
There are 7 rows of chairs in the hall. Each row contains 9 chairs.	$6 \times 9=63$
How much money will they make?	

What do you notice about the pattern when counting in 7s from 0? Does this continue beyond 7 times 12? Can you explain why?	Odd, even pattern because odd + odd = even.
In which other times tables will you see the	
same pattern?	Then even + odd = odd, and this will continue throughout the whole times table.
	The same pattern will occur in all other odd
multiplication	
tables (e.g. 1,3,5,	
9).	

Year 4 | Autumn Term | Week 9 to 11 - Number: Multiplication \& Division

7 Times Table \& Division Facts

Notes and Guidance

Children apply the facts from the 7 times table (and other previously learned tables) to solve calculations with larger numbers.
They need to spend some time exploring links between multiplication tables and investigating how this can help with mental strategies for calculation.
e.g. $7 \times 7=49,5 \times 7=35$ and $2 \times 7=14$

Mathematical Talk

If you know the answer to three times seven, how does it help you?

What's the same and what's different about the number facts?
How does your 7 times table help you work out the answers?

Varied Fluency

Complete.

$$
\begin{gathered}
3 \times 7= \\
30 \times 7= \\
300 \times 7=
\end{gathered}
$$

Use your knowledge of the 7 times table to calculate.

$$
80 \times 7=_\quad \quad=60 \times 7
$$

$$
70 \times 7=
$$

\qquad

$$
7 \times 500=
$$

\square How would you use times tables facts to help you calculate how many days there are in 15 weeks? Complete the sentences.

There are \qquad days in one week.
\qquad $\times 10=$ \qquad
There are \qquad days in 10 weeks.
\qquad $\times 5=$ \qquad
There are \qquad days in 5 weeks.
\qquad $+$ \qquad $=$ \qquad
There are \qquad days in 15 weeks.

7 Times Table \& Division Facts

Reasoning and Problem Solving

True or False?	True. $\qquad 7 \times 6=7 \times 3 \times 2$
Explain your answer to a friend. Prove using a drawing.	False, because $7 \times$ $6=42$ whereas 7 $\times 7=49$ then 49 $+8=57$
	Children could draw a bar model or bundles of straws.
\qquad	

Children were arranged into rows of seven.
There were 5 girls and 2 boys in each row.

Use your times table knowledge to show how many girls would be in 10 rows and in 100 rows.

Show as many number sentences using multiplication and division as you can which are linked to this picture.

How many children in total are there in 200 rows? How many girls? How many boys?

10 rows

$5 \times 10=50$ girls
100 rows
$5 \times 100=500$
girls

200 rows
Children in total: 7
$\times 200=1,400$
Girls: $5 \times 200=$ 1,000

Boys: $2 \times 200=$ 400

Year 4 | Spring Term | Week 1 to 3 - Number: Multiplication \& Division

11 and 12 Times-table

Notes and Guidance

Building on their knowledge of the 1,2 and 10 times-tables, children explore the 11 and 12 times-tables through partitioning.
They use Base 10 equipment to build representations of the times-tables and use them to explore the inverse of multiplication and division statements.
Highlight the importance of commutativity as children should already know the majority of facts from other times-tables.

Varied Fluency

\square Fill in the blanks.

$$
\begin{array}{r}
\quad 2 \times 10= \\
2 \text { lots of } 10 \text { doughnuts }= \\
2 \text { lots of } 11 \text { doughnuts }= \\
2 \times 10+2 \times 1=2 \times 11=
\end{array}
$$

$2 \times 1=$ \qquad 2 lots of 1 doughnut $=$ \qquad

Mathematical Talk

Which multiplication and division facts in the 11 and 12 timestables have not appeared before in other times-tables?

Can you partition 11 and 12 into tens and ones? What timestables can we add together to help us multiply by 11 and 12 ?

If I know 11×10 is equal to 110 , how can I use this to calculate 11 $\times 11$?

Use Base 10 to build the 12 times-table. e.g.

Complete the calculations.
$12 \times 5=\square \quad 5 \times 12=\square \quad 48 \div 12=\square \quad 84 \div 12=\square$
$12 \times \square=120 \quad 12 \times \square=132 \quad \square \div 12=8 \quad \square=9 \times 12$
\square There are 11 players on a football team.
7 teams take part in a tournament.
How many players are there altogether in the tournament?

11 and 12 Times-table

Reasoning and Problem Solving

Here is one batch of muffins.

Teddy bakes 11 batches of muffins. How many muffins does he have altogether?

In each batch there are 3 strawberry, 3 vanilla, 4 chocolate and 2 toffee muffins.
How many of each type of muffin does
Teddy have in 11 batches?
Teddy sells 5 batches of muffins.
How many muffins does he have left?

Teddy has 132
muffins altogether.
Strawberry: 33
Vanilla: 33
Chocolate: 44
Toffee: 22
$132-55=77$
Teddy has 77
muffins left.

Rosie uses a bar model to represent 88 divided by 11

88										
11	11	11	11	11	11	11	11	11	11	11

Rosie has divided by grouping in 11s but has found 11 groups of 11 which is equal to 121

Explain Rosie's mistake.
Can you draw a bar model to represent 88 divided by 11 correctly?

To divide 88 by
sharing into 11 equal groups, there would be 8 in each group.

To divide 88 by grouping in 11s, there would be 8 groups of 11

White Multiplication \& Division
 R@SE Theme 3 - Multiplying and Maths dividing by 10, 100, 1 and 0

Multiply by 10

Notes and Guidance

Varied Fluency

Children need to be able to visualise and understand making a number ten times bigger and that 'ten times bigger' is the same as 'multiply by 10 '

The language of 'ten lots of' is vital to use in this step. The understanding of the commutative law is essential because children need to see calculations such as 10×3 and 3×10 as equal.

Mathematical Talk

Can you represent these calculations with concrete objects or a drawing?

Can you explain what you did to a partner?
What do you notice when multiplying by 10 ? Does it always work?

What's the same and what's different about 5 buses with 10 passengers on each and 10 buses with 5 passengers on each?

$$
10 \times 3
$$

\square 5 buses have ten passengers.

8 pots each have ten pencils.

10 chickens lay 5 eggs each.

Write the calculation shown by the place value counters.

Each row has \qquad tens and \qquad ones.

Each row has a value of \qquad .

There are \qquad rows.

The calculation is \qquad \times \qquad $=$ \qquad .

Use place value counters to calculate:

$$
4 \times 10
$$

$$
12 \times 10
$$

Match each statement to the correct bar model.

10	10	10	10	10

5	5	5	5	5	5	5	5	5	5

10	10	10	10	10	10	10	10

Multiply by 10

Reasoning and Problem Solving

Always, Sometimes, Never	Always. If you write a whole number in a place value grid and multiply it by 10, all the digits move one column to the left. for a placeholder after the new rightmost digit.

Annie has multiplied a whole number by	45×10
10	46×10
	47×10
Her answer is between 440 and 540	48×10
What could her original calculation be?	49×10
How many possibilities can you find?	50×10
	51×10
	52×10
	53×10
	(or the above
	calculations
	written as
	10×45 etc.).

Year 4 | Autumn Term | Week 9 to 11 - Number: Multiplication \& Division

Multiply by 100

Notes and Guidance

Varied Fluency

Children build on multiplying by 10 and see links between multiplying by 10 and multiplying by 100

Use place value counters and Base 10 to explore what is happening to the value of the digits in the calculation and encourage children to see a rule so they can begin to move away from concrete representations.

Mathematical Talk

How do the Base 10 help us to show multiplying by 100 ?
Can you think of a time when you would need to multiply by 100?

Will you produce a greater number if you multiply by 100 rather than 10 ? Why?

Can you use multiplying by 10 to help you multiply by 100 ? Explain why.
75×100
39×100
460×10
$39 \times 10 \times 10$
100×47

Multiply by 100

Reasoning and Problem Solving

The part-whole model does not represent multiplying by 100

Part-whole models
show addition (the aggregation structure) and subtraction (the partitioning structure), so if the whole is 300 and there are two parts, the parts added together should total 300 (e.g. 100 and 200 , or 297 and 3). If the parts are 100 and 3, the whole should be 103.

To show multiplying 3 by 100 as a partwhole model, there would need to be 100 parts each with 3 in.

The perimeter of the rectangle is 26 m .
Find the length of the missing side.
Give your answer in cm.

The missing side length is 6 m so in cm it will be:
$6 \times 100=600$
The missing length is 600 cm .

Divide by 10

Notes and Guidance

Exploring questions with whole number answers only, children divide by 10
They should use concrete manipulatives and place value charts to see the link between dividing by 10 and the position of the digits before and after the calculation.
Using concrete resources, children should begin to understand the relationship between multiplying and dividing by 10 as the inverse of the other.

Mathematical Talk

What has happened to the value of the digits?
Can you represent the calculation using manipulatives?
Why do we need to exchange tens for ones?
When dividing using a place value chart, in which direction do the digits move?

Varied Fluency

Use place value counters to show the steps to divide 30 by 10

Can you use the same steps to divide a 3-digit number like 210 by 10 ?

Use Base 10 to divide 140 by 10 Explain what you have done.

Ten friends empty a money box. They share the money equally between them. How much would they have each if the box contained:

- $20 £ 1$ coins?
- £120
- £24?

After emptying the box and sharing the contents equally, each friend has 90 p .
How much money was in the box?

Divide by 10

Reasoning and Problem Solving

Four children are in a race. The numbers
on their vests are:

| 350 | Alex -53 |
| :--- | :--- | :--- |
| Jack -350 | |

Dora - 35
Use the clues to match each vest number
to a child.

- Jack's number is ten times smaller
than Mo's.
Alex's number is not ten times
smaller than Jack's or Dora's or Mo's.
Dora's number is ten times smaller
than Jack's.

While in Wonderland, Alice drank a potion and everything shrank. All the items around her became ten times smaller! Are these measurements correct?

Item	Original measurement	After shrinking
Height of a door	220 cm	$2,200 \mathrm{~cm}$
Her height	160 cm	16 cm
Length of a book	340 mm	43 mm
Height of a mug	220 mm	$?$

Can you fill in the missing measurement?
Can you explain what Alice did wrong?
Write a calculation to help you explain each item.

Height of a door

Incorrect - Alice
has multiplied by 10.

Her height Correct

Length of a book Incorrect - Alice has swapped the order of the digits. When dividing by 10 the order of the digits never changes.

Height of a mug

22 mm .

Year 4 | Autumn Term | Week 9 to 11 - Number: Multiplication \& Division

Divide by 100

Notes and Guidance

Children divide by 100 with whole number answers.

Money and measure is a good real-life context for this, as coins can be used for the concrete stage.

Mathematical Talk

How can you use dividing by 10 to help you divide by $100 ?$
How are multiplying and dividing by 100 related?

Write a multiplication and division fact family using 100 as one of the numbers.

Varied Fluency

D
Is it possible for $£ 1$ to be shared equally between 100 people?
How does this picture explain it?
Can $£ 2$ be shared equally between 100 people?
How much would each person receive?

Match the calculation with the correct answer.

$4,200 \div 10$
$4,200 \div 100$
$420 \div 10$

Use $<,>$ or $=$ to make each statement correct.
$3,600 \div 10$
$2,700 \div 100$

$4,200 \div 100$ | $3,600 \div 100$ |
| :--- |
| $270 \div 10$ |
| $430 \div 10$ |

Divide by 100

Reasoning and Problem Solving

Eva and Whitney are dividing numbers by
10 and 100

They both start with the same 4-digit

number. | They started with |
| :--- |
| 2,800 |

$$
\begin{aligned}
& \text { Use the digit cards to fill in the missing } \\
& \text { digits. } \\
& \begin{array}{rl}
4123 & 4 \\
170 \div 10 & =-- \\
9 & \begin{array}{l}
1,860 \div 10=186 \\
59 \times 100=
\end{array} \\
5,900 \\
64=6,400 \div \\
100
\end{array} \\
& 170 \div 10=17 \\
& 320 \times 10=3,200 \\
& _20 \times 10=3, _00 \\
& 1,8 _0 \div 10=1 _6 \\
& _9 \times 100=5, _00 \\
& 6 _=6,400 \div 100
\end{aligned}
$$

Year 4 | Autumn Term | Week 9 to 11 - Number: Multiplication \& Division

Multiply by 1 and 0

Notes and Guidance

Varied Fluency

Children explore the result of multiplying by 1 , using concrete equipment.

Linked to this, they look at multiplying by 0 and use concrete equipment and pictorial representations of multiplying by 0

Mathematical Talk

Use number pieces to show me $9 \times 1,3 \times 1,5 \times 1$
What do you notice?
\square Complete:
What does 0 mean?

$=4$	$=1 \times 7$	$0=\ldots \times 42$
$63 \times 1=$	- $\times 27=$	$50 \times=50$

What's the same and what's different about multiplying by 1 and multiplying by 0 ?

Multiply by 1 and 0

Reasoning and Problem Solving

Which answer could be the odd one out?	
What makes it the odd one out?	
$3+0=\ldots$	$3 \times 0=0$ is the odd one out because it is the only one with O as an answer.
$\qquad 3 \times 0=$	The addition and subtraction calculations have an answer of 3 because they started with that amount and added or subtracted 0 (nothing). 3×0 means '3
\qquad	why the answer is different. lots of nothing', so the total is zero.
\qquad	

Divide by 1

Notes and Guidance

Children learn what happens to a number when you divide it by 1 or by itself. Using concrete and pictorial representations, children demonstrate how both the sharing and grouping structures of division can be used to divide a number by 1 or itself. Use stem sentence to encourage children to see this e.g. 5 grouped into 5 s equals $1(5 \div 5=1)$
5 grouped into 1 s equals $5(5 \div 1=5)$

Mathematical Talk

What does sharing mean? Give an example.
What does grouping mean? Give an example.

Can you write a worded question where you need to group?
Can you write a worded question where you need to share?

Varied Fluency

Use counters and hands to complete.

- 4 counters shared between 4 hands \qquad \div \qquad $=$ \qquad
- 4 counters shared between 1 hand \qquad \div \qquad $=$ \qquad
- 9 counters grouped in 1 s \qquad \div \qquad
\qquad
- 9 counters grouped in 9s \qquad \div \qquad $=$ \qquad
\square Choose the correct bar model to help you answer this question. Annie has $£ 4$ in total. She gives away $£ 4$ at a time to her friends. How many friends receive $£ 4$?

$£ 4$						
$£ 1$	$£ 1$	$£ 1$	$£ 1$			$£ 4$
:---	:---					

Draw a bar model for each question to help you work out the answer.

- Tommy baked 7 cookies and shared them equally between his 7 friends. How many cookies did each friend receive?
- There are 5 sweets. Children line up and take 5 sweets at a time. How many children have 5 sweets?

Divide by 1

Reasoning and Problem Solving

White Multiplication \& Division
 R©Se Theme 4 - Comparing and
 Maths applying

Comparing Statements

Notes and Guidance

Children use their knowledge of multiplication and division facts to compare statements using inequality symbols.

It is important that children are exposed to a variety of representations of multiplication and division, including arrays and repeated addition.

Mathematical Talk

What other number sentences does the array show?
If you know your 4 times-table, how can you use this to work out your 8 times-table?

What's the same and what's different about 8×3 and 7×4 ?

Varied Fluency

Use the array to complete the number sentences.

$$
\begin{aligned}
& 3 \times 4=\square \\
& 4 \times 3=\square \\
& \square \div 3=\square \\
& \square \div 4=\square
\end{aligned}
$$

Use $<,>$ or $=$ to compare.

\square Complete the number sentences.
$5 \times 1<$ \qquad \times \qquad $4 \times 3=$ \qquad $\div 3$

Comparing Statements

Reasoning and Problem Solving

Whitney says, Do you agree? Can you prove your answer?	Possible answer: She is wrong because they are equal.
True or false? $\begin{aligned} & 6 \times 7<6+6+6+6+6+6+6 \\ & 7 \times 6=7 \times 3+7 \times 3 \\ & 2 \times 3+3>5 \times 3 \end{aligned}$	False True False

Related Calculations

Notes and Guidance

Children use known multiplication facts to solve other multiplication problems.
They understand that because one of the numbers in the calculation is ten times bigger, then the answer will also be ten times bigger.
It is important that children develop their conceptual understanding through the use of concrete manipulatives.

Varied Fluency

Complete the multiplication facts.

\square The number pieces represent $5 \times$ \qquad $=$ \qquad

If each hole is worth ten, what do the pieces represent?
What is the same and what is different about the place value counters?
\square If we know $2 \times 6=12$, we also know $2 \times 60=120$ Use this to complete the fact family.
How does this fact help us solve this problem?
If we know these facts, what other facts do we know?
Can you prove your answer using manipulatives?

Mathematical Talk

Complete the fact families for the calculations.

Related Calculations

Reasoning and Problem Solving

Is Mo correct? Explain your answer.	Mo is correct. I know $3 \times 4=12$, so if he has $3 x$ 40 then his answer will be ten times bigger because 4 has become ten times bigger.
Rosie has 240 cakes to sell. She puts the same number of cakes in each box and has no cakes left over. Which of these boxes could she use?	She could use 10 , 20, 30, 40, 60, 80 because 240 is a multiple of all of these numbers. $\begin{aligned} & 10 \times 24=240 \\ & 20 \times 12=240 \\ & 30 \times 8=240 \\ & 40 \times 6=240 \\ & 60 \times 4=240 \\ & 80 \times 3=240 \end{aligned}$

True or false?
 $$
5 \times 30=3 \times 50
$$

Prove it.

Possible response:
Children may represent it with place value counters.

True because they are equal.

Children may explore the problem in a context.
e.g. 5 lots of 30
apples compared to 3 lots of 50 apples.

Year 4 | Spring Term | Week 1 to 3 - Number: Multiplication \& Division

Multiply 3 Numbers

Notes and Guidance

Children are introduced to the 'Associative Law' to multiply 3 numbers. This law focuses on the idea that it doesn't matter how we group the numbers when we multiply
e.g. $4 \times 5 \times 2=(4 \times 5) \times 2=20 \times 2=40$
or $4 \times 5 \times 2=4 \times(5 \times 2)=4 \times 10=40$
They link this idea to commutativity and see that we can change the order of the numbers to group them more efficiently, e.g. $4 \times 2 \times 5=(4 \times 2) \times 5=8 \times 5=40$

Mathematical Talk

Can you use concrete materials to build the calculations?
How will you decide which order to do the multiplication in?

Varied Fluency

Complete the calculations.

What's the same and what's different about the arrays? Which order do you find easier to calculate efficiently?

Multiply 3 Numbers

Reasoning and Problem Solving

Choose three digit cards.
Arrange them in the calculation.

How many different calculations can you make using your three digit cards? Which order do you find it the most efficient to calculate the product? How have you grouped the numbers?

Possible answers using 3,4 and 7 :
$7 \times 3 \times 4=84$
$7 \times 4 \times 3=84$
$4 \times 3 \times 7=84$
$4 \times 7 \times 3=84$
$3 \times 4 \times 7=84$
$3 \times 7 \times 4=84$
Children may find it easier to calculate 7×3 first and then multiply it by 4 as 21 multiplied by 4 has no exchanges.

Make the target number of 84 using three of the digits below.

Multiply the remaining three digits together, what is the product of the three numbers?

Is the product smaller or larger than $84 ?$
Can you complete this problem in more than one way?

Possible answers:
$7 \times 2 \times 6=84$
$4 \times 3 \times 5=60$
60 is smaller than
84
$7 \times 3 \times 4=84$
$2 \times 6 \times 5=60$
60 is smaller than
84
Children may also show the numbers in a different order.

Year 4 | Spring Term | Week 1 to 3 - Number: Multiplication \& Division

Efficient Multiplication

Notes and Guidance

Children develop their mental multiplication by exploring different ways to calculate.
They partition two-digit numbers into tens and ones or into factor pairs in order to multiply one and two-digit numbers. By sharing mental methods, children can learn to be more flexible and efficient.

Mathematical Talk

Which method do you find the most efficient?
Can you see why another method has worked? Can you explain someone else's method?

Can you think of an efficient way to multiply by 99?

Varied Fluency

Class 4 are calculating 25×8 mentally.
Can you complete the calculations in each of the methods?
Method $1 \quad$ Method 2
$25 \times 8=20 \times 8+5 \times 8 \quad 25 \times 8=5 \times 5 \times 8$
$=160+\square=\square$

Method 4

Can you think of any other ways to mentally calculate 25×8 ? Which do you think is the most efficient? How would you calculate 228×5 mentally?

Efficient Multiplication

Reasoning and Problem Solving

Here are three number cards.	Dora has 38
21 42 38	Annie has 21
Dora, Annie and Eva choose one of the number cards each. They multiply their number by 5	Eva has 42
	Children can then discuss the methods they
Annie says,	and why.
I multiplied my number by 10 and then divided 210 by 2	
Eva says, I halved my 2-digit number and doubled 5 so I calculated 21×10	
Which number card did each child have? Would you have used a different method to multiply the numbers by 5 ?	

White
 Multiplication \& Division

R@se
Theme 5 - Factors

Year 4 | Spring Term | Week 1 to 3 - Number: Multiplication \& Division

Factor Pairs

Notes and Guidance

Children learn that a factor is a whole number that multiplies by another number to make a product e.g. $3 \times 5=15$, factor \times factor $=$ product.
They develop their understanding of factor pairs using concrete resources to work systematically, e.g. factor pairs for 12 - begin with $1 \times 12,2 \times 6,3 \times 4$. At this stage, children recognise that they have already used 4 in the previous calculation therefore all factor pairs have been identified.

Mathematical Talk

Which number is a factor of every whole number?
Do factors always come in pairs?
Do whole numbers always have an even number of factors?
How do arrays support in finding factors of a number? How do arrays support us in seeing when a number is not a factor of another number?

Varied Fluency

Complete the factor pairs for 12
$\bigcirc \bigcirc 12$

000000 $\square \times 6=12$

12 has \qquad factor pairs. 12 has \qquad factors altogether. Use counters to create arrays for 24 How many factor pairs can you find?
\square Here is an example of a factor bug for 12
Complete the factor bug for 36

Are all the factors in pairs?
Draw your own factor bugs for 16, 48, 56 and 35

Factor Pairs

Reasoning and Problem Solving

Is Tommy correct? Use arrays to explain your answer.	Tommy is incorrect. Children explain by showing an example of two numbers where the greater number has less factors. For example, 15 has 4 factors 1, 3, 5 and 15 17 has 2 factors 1 and 17

[^0]: What's the same about each question? What's different?

